z^2+(1-2i)z-2i=0

Simple and best practice solution for z^2+(1-2i)z-2i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2+(1-2i)z-2i=0 equation:


Simplifying
z2 + (1 + -2i) * z + -2i = 0

Reorder the terms for easier multiplication:
z2 + z(1 + -2i) + -2i = 0
z2 + (1 * z + -2i * z) + -2i = 0

Reorder the terms:
z2 + (-2iz + 1z) + -2i = 0
z2 + (-2iz + 1z) + -2i = 0

Reorder the terms:
-2i + -2iz + 1z + z2 = 0

Solving
-2i + -2iz + 1z + z2 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '-1z' to each side of the equation.
-2i + -2iz + 1z + -1z + z2 = 0 + -1z

Combine like terms: 1z + -1z = 0
-2i + -2iz + 0 + z2 = 0 + -1z
-2i + -2iz + z2 = 0 + -1z
Remove the zero:
-2i + -2iz + z2 = -1z

Add '-1z2' to each side of the equation.
-2i + -2iz + z2 + -1z2 = -1z + -1z2

Combine like terms: z2 + -1z2 = 0
-2i + -2iz + 0 = -1z + -1z2
-2i + -2iz = -1z + -1z2

Reorder the terms:
-2i + -2iz + z + z2 = -1z + z + -1z2 + z2

Combine like terms: -1z + z = 0
-2i + -2iz + z + z2 = 0 + -1z2 + z2
-2i + -2iz + z + z2 = -1z2 + z2

Combine like terms: -1z2 + z2 = 0
-2i + -2iz + z + z2 = 0

The solution to this equation could not be determined.

See similar equations:

| (2x-y)-32i=4+4yi | | (7+4)(6+4x)=25-7.5(x+5) | | x/z=-z | | 7.113/2.3=v | | -21/3 | | 52+4= | | 7(x-2)+9= | | 1*4=2 | | 713/31=23 | | 8*14=112 | | r-7=4-2r | | (45/3)7+3-7 | | w-7=9 | | 6+5p=31 | | -18=-9u | | Y^1/3+Y^1/6-2=0 | | X^3-2x^2-41x+42=0 | | 5x-12+4x=7x+2-16 | | 7=u+5 | | 5/8x+1/6=11/12 | | 7=u+2 | | (k-3)(k-3)=(2)(k+1) | | 2x^2+X^1+1=0 | | 7208-220=0x | | cx+2x+b=1 | | k^2-6k+9=2k+2 | | w+1/6 | | 5+2x-x-3+8x= | | r+7=4-2r | | 6x-8-4x-3=1-x | | 9(2x+5)= | | 3ax=.25 |

Equations solver categories